A two-sample test for high-dimension, low-sample-size data under the strongly spiked eigenvalue model

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Largest Eigenvalue Estimation for High-Dimension, Low-Sample-Size Data and its Application

A common feature of high-dimensional data is the data dimension is high, however, the sample size is relatively low. We call such data HDLSS data. In this paper, we study HDLSS asymptotics when the data dimension is high while the sample size is fixed. We first introduce two eigenvalue estimation methods: the noise-reduction (NR) methodology and the cross-data-matrix (CDM) methodology. We show ...

متن کامل

Deep Neural Networks for High Dimension, Low Sample Size Data

Deep neural networks (DNN) have achieved breakthroughs in applications with large sample size. However, when facing high dimension, low sample size (HDLSS) data, such as the phenotype prediction problem using genetic data in bioinformatics, DNN suffers from overfitting and high-variance gradients. In this paper, we propose a DNN model tailored for the HDLSS data, named Deep Neural Pursuit (DNP)...

متن کامل

Geometric representation of high dimension, low sample size data

High dimension, low sample size data are emerging in various areas of science. We find a common structure underlying many such data sets by using a non-standard type of asymptotics: the dimension tends to 1 while the sample size is fixed. Our analysis shows a tendency for the data to lie deterministically at the vertices of a regular simplex. Essentially all the randomness in the data appears o...

متن کامل

Asymptotics for High Dimension, Low Sample Size data and Analysis of Data on Manifolds

SUNGKYU JUNG: Asymptotics for High Dimension, Low Sample Size data and Analysis of Data on Manifolds. (Under the direction of Dr. J. S. Marron.) The dissertation consists of two research topics regarding modern non-standard data analytic situations. In particular, data under the High Dimension, Low Sample Size (HDLSS) situation and data lying on manifolds are analyzed. These situations are rela...

متن کامل

Pca Consistency in High Dimension , Low Sample Size Context

Principal Component Analysis (PCA) is an important tool of dimension reduction especially when the dimension (or the number of variables) is very high. Asymptotic studies where the sample size is fixed, and the dimension grows (i.e. High Dimension, Low Sample Size (HDLSS)) are becoming increasingly relevant. We investigate the asymptotic behavior of the Principal Component (PC) directions. HDLS...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Hiroshima Mathematical Journal

سال: 2017

ISSN: 0018-2079

DOI: 10.32917/hmj/1509674448